An Extension of Local Time
نویسندگان
چکیده
In this paper, we construct an analog of local time for arbitrary Lévy process with finite second moment. When our is a Wiener process, object coincides the time.
منابع مشابه
Extension functors of local cohomology modules
Let $R$ be a commutative Noetherian ring with non-zero identity, $fa$ an ideal of $R$, and $X$ an $R$--module. Here, for fixed integers $s, t$ and a finite $fa$--torsion $R$--module $N$, we first study the membership of $Ext^{s+t}_{R}(N, X)$ and $Ext^{s}_{R}(N, H^{t}_{fa}(X))$ in the Serre subcategories of the category of $R$--modules. Then, we present some conditions which ensure the exi...
متن کاملExtension functors of generalized local cohomology modules and Serre subcategories
In this paper we present several results concerning the cofiniteness of generalized local cohomology modules.
متن کاملThe exploration process of inhomogeneous continuum random trees, and an extension of Jeulin's local time identity
We study the inhomogeneous continuum random trees (ICRT) that arise as weak limits of birthday trees. We give a description of the exploration process, a function defined on [0, 1] that encodes the structure of an ICRT, and also of its width process, determining the size of layers in order of height. These processes turn out to be transformations of bridges with exchangeable increments, which h...
متن کاملLocal extension of maps
We continue our investigations into absolute CR-epic spaces. Given a continuous function f : X // Y , with X absolute CR-epic, we search for conditions which imply that Y is also absolute CR-epic. We are particularly interested in the cases when X is a dense subset of Y and when f is a quotient mapping. To answer these questions, we consider issues of local extension of continuous functions. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Sciences
سال: 2021
ISSN: ['1072-3374', '1573-8795']
DOI: https://doi.org/10.1007/s10958-021-05583-0